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Unification of Quantum Theory and Relativity

P. Leifer1

Received July 4, 1997

A underlying dynamical structure for both relativity and quantum
theoryÐ ª superrelativityº Ð has been proposed in order to overcome the well-
known incompatibility between these theories. The relationship between curvature
of spacetime (gravity) and curvature of the projective Hilbert space of pure
quantum states is established as well.

1. INTRODUCTION. ABOUT ª SUPERRELATIVITYº

A new principle of ª superrelativityº (SuperR) has been discussed in

previous reports (Leifer, 1996a, b). In the framework of this principle a

nonlinear equation of motion for a relativistic scalar field [see (6.23) in Leifer

(1996a)] was established. In this work we will study the physical meaning

of this equation on the basis of an approximate solution.

A few words about general properties of our approach. Notions of
material point, event, and classical spacetime in both special (SR) and general

relativity (GR) are liable to lead to confusion at the quantum level. Instead

of these obsolete objects we use a new set of primordial elements. Namely,

they are pure quantum state, quantum transition, and quantum state space,

respectively. In the framework of our model the fundamental scalar field is

rendered in a self-interacting nonlinear field configurationÐ ª droplet.º The
proper surrounding field of the droplet is a non-Abelian (relative to the

transformation group of the Fourier components of the scalar field) gauge

field of the connection in the complex projective Hilbert space of pure

quantum states CP(N 2 1). The principle of ª superequivalenceº identifies
this unified gauge field with the real physical fields of nonlocal elementary
particles. That is, the ª superequivalenceº principle establishes a parallelism
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between GR and SuperR. This parallelism means that in GR the freely falling

frame serves for the description of motion of the material point. In SuperR

a local functional frame connected with proper components of the scalar

field configuration serves for the description of the evolution of the quantum

state in the unified surrounding gauge field of the connection in CP(N 2 1).
The equivalence principle of Einstein (1916) is based on the experimental

fact that acceleration of bodies in a gravitational field is independent of the

masses of these bodies. This situation is physically equivalent to the motion

of the system of bodies in an accelerated frame. We cannot, of course, put the

criterion of identical acceleration as the basis of geometrization of quantum

physical fields. In quantum field theory the notion of ª accelerationº is poor

at best and ambiguous at worst because a quantum particle has some internal

structure. Furthermore, at a deeper level there is entanglement and even

indistinguishability of ª internalº and ª externalº degrees of freedom. There-

fore in the quantum regime we can not act literally as Einstein did in GR,

but only in his spirit (Leifer, 1996a, b).

We have put at the basis of our ª superequivalenceº principle the fact

that in all interactions of quantum (ª elementaryº ) particles there is a conser-

vation law of electric charge. Then the group of isotropy of a pure quantum

state | C . is H 5 U (1)el 3 U (N 2 1). For ordinary Hilbert space C(N) the

variations of a pure quantum state | C . lie in the coset G /H 5 SU(N )/S [H

5 U (1)el 3 U (N 2 1)]. It is clear that variations of the pure quantum state

are due to some physical interaction; the effect of the interaction has the

geometric structure of a coset, i.e., the structure of the complex projective

Hilbert space CP(N 2 1) (Kobayashi and Nomizu, 1969)

G /H 5 SU(N )/S[U(1)el 3 U (N 2 1)] 5 CP(N 2 1) (1.1)

This statement has a general character and does not depend on particular

properties of the pure quantum state. The reason for the change of motion

of a material point is the existence of a force. The reason for the change of

a pure quantum state is an interaction, which may be modeled by unitary

transformations from the coset (1.1). The reaction of a material point is

acceleration. The reaction of a pure quantum state is the deformation of the

ª ellipsoid of polarizationº (Leifer, 1996a, b). One-parameter transformations

from the coset create the geodesic flows which are defined by the matrix

TÃ( t , g), (5.7) of Leifer (1996a). Therefore geodesics in CP(N 2 1) play an

important, but quite different role than geodesics in GR (Leifer, 1996a, b).

In the local coordinates

p i
(0) 5 C i / C 0 (1.2)
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one can build a local functional frame for which

D s (PÃ) 5 F i
s ( p , P)

d
d p i 1 F i*s ( p , P)

d
d p i* (1.3)

spans the tangent Hilbert space relative to the Fubini±Study metric (Leifer,
1996a, b)

Gik* 5 2 " R 2
1 R 2 1 o

N 2 1

s 5 1
| p s | 2 2 d ik 2 p i* p k

1 R2 1 o
N 2 1

s 5 1

| p s | 2 2
2 (1.4)

The coefficients of these tangent vectors are defined by

F i
s ( p , P) 5 lim

e ® 0
e 2 1 H [exp(i e P s )]i

m C m

[exp(i e P s )]0
m C m 2

C i

C 0 J 5 lim
e ® 0

e 2 1{ p i( e P s ) 2 p i}

(1.5)

As a matter of fact, one even has a generalization of the main idea of

Einstein in gravity. Namely, in GR we can separate the universe into two

partsÐ gravitational field and ª matterº (Einstein, 1916). In the framework of

GR the gravitational field is ª dissolvedº in the geometry of spacetime. In

SuperR all matter is ª dissolvedº in the geometry of the projective Hilbert
space. Therefore we have a consistent approach to the problem of the diver-

gences, since the spacetime localization has, from this point of view, a

dynamical character (Leifer, 1996a, b). We can exemplify this point in QED.

The regularization procedure is effectively the procedure of a ª delocal-

izationº of a point-charged electron. We do not know, however, the mechanism

for the suppression of processes of higher orders and it is very difficult to
find some physically acceptable mechanism for keeping the extended electron

from flying apart (Dirac, 1962). But on closer examination we will probably

find that this difficulty is not a real one; in the ª geometry of the deformation

of the pure quantum statesº CP(N 2 1) there is an absolutely natural stabilizing

Goldstone and Higgs mechanism (Leifer, 1996a, b) (which requires investiga-
tion in detail). It seems much better to think of ª deformationº of the quantum

state and then look for localizable solutions (ª dropletsº ) of some nonlinear

wave equation as a model of nonlocal quantum particles than to begin with

the point-charged electron.

2. SUPERRELATIVITY AND GRAVITY

One obtains a nonlinear Klein±Gordon equation (NLKG) for the effective

deformation of a quantum state by requiring that the evolution should move
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the quantum state along a geodesic curve in CP(N 2 1) (Leifer, 1996a, b).

This equation is as follows:

N C * 1 NA* 1 C *m m
d A m

d C m
1 C *m

d A m m

d C m

1 a 2 1 C * 1 D C * 1 C *
d D C
D C 2 5 0, c.c. (2.1)

where A m 5 - D C / - x m , A m m 5 - D C / - x m - x m , C m 5 - C / - x m , C m m 5
- C / - x m - x m , and

D C i 5 2
g C 0 t 2

! 1 1 | C 0 | 2 /R 2
G i

km j k C m (2.2)

We seek a solution for the equation in the approximate form C 5 F 1 t D F ,

where F obeys the Klein±Gordon equation. That is, we assume that the
solution of the NLKG may be represented as a solution of the ordinary

Klein±Gordon equation plus some extra terms arising from the geometric

gauge ª potentialº in CP(N 2 1)

G i
kl 5 2 2

d i
k p l* 1 d i

l p k*

R 2 1 o
N 2 1

s
| p s | 2

(2.3)

It is clear that we cannot hope find a (nonperturba tive) soliton-like solution

of the NLKG. But our aim now is to establish locally a relationship between

the spacetime structure and the curvature of the projective Hilbert space.

In order to do it, let us look at the equation for a scalar field in curved

spacetime, i.e.,

( 2 g) 2 1/2 - m [( 2 g)1/2g m n - n F ] 1 m 2 F 1 h r (x) F 5 0 (2.4)

where h is a coupling parameter, g m v is the metric tensor, and r (x) is the

scalar curvature of spacetime (see, for example, Birrell and Davies (1982)).
One may think of to extra terms in (2.1) as associated with a scalar field in

a Riemannian geometry as in (2.4). I have obtained the coefficients in (2.1)

in a ª CP(2)-approximationº up to second order in t with the help of a program

in ª Mathematica.º They have a very simple structure, but many terms. If

one tries to identify some terms with the Fourier components of the metric

tensor g m n , then one cannot be certain that different terms in (2.1) are the
correct Fourier components of the scalar curvature r (x) appearing in (2.4).

Notwithstanding this, we can think of an ª effective Riemannian geometryº

of the spacetime in which fluctuations could be effectively described by the

phenomenological parameters m and h . The NLKG equation, as distinct from



Unification of Quantum Theory and Relativity 391

(2.4), contains only one free parameter, the sectional curvature 1/R 2 of the

projective Hilbert space. Note that NLKG contains a term with the fine

structure constant a instead of the mass of the scalar field. This is a conse-
quence of the choice of the ª classical radiusº of the meson r0 5 e 2/mc2

as the unit of our scale (Leifer, 1996a, b). Such a choice is useful since

the inequality

! " G

c3 ,
e2

mc2 ,
"

mc
,

"

! 2m (E 2 U )
(2.5)

may be rewritten as follows:

m

e ! G

a
, 1 ,

1

a
,

mc

a ! 2m (E 2 U )
(2.6)

This shows that besides the de Broglie envelope, long-range plane waves

which depend on modulation by the ª externalº parameters E, U, there is a

wide range of ª internalº oscillations. These oscillations are connected with
internal degrees of freedom and should be related to the spatial destribution

of a matter carrier for these degrees of freedom. The expression for the mass

distribution can be obtained under the above-mentioned assumption on an

ª effective Riemannian geometry.º We have, in accordance with the Einstein

(1916) expression for g00,

g00 5 1 2
2GM

c2r
5 1 2

rS

r
5 1 1 V (x, R) (2.7)

where V (x, R) is the collection of terms in the decomposition of (2.1) which

corresponds to the time component of the Laplacian. Then one has a formula

for the spatial distribution of mass

M (x, R) 5
c 2r

2G
V 0(x, R) (2.8)

The implication of this result and some corrections to the nuclear potential

of Yukawa will be discussed elsewhere.

3. DISCUSSION

The unified structure of a ª deformationº of the pure quantum state gives

us the possibility to investigate some general properties of quantum systems.
The nontrivial metric and topology of the projective Hilbert space presumably

may endow global solutions of a nonlinear wave equation with interesting

physical properties. The tangent fiber bundle of the quantum state space in

our model is the main tool of the unified description of matter fields in the
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spirit de Broglie±SchroÈ dinger±Bohm. The connection in the projective Hilbert

space is a generalization of the well-known Panchratnam connection. This

connection defines a parallel transport in CP(N 2 1). A comparison of
ª directionsº in the original spacetime is reduced to the comparison of field

configurations (shapes of ª ellipsoid of polarizationº ) by parallel transport in

a projective Hilbert space. Spacetime structure therefore appears to arise only

ª effectivelyº and the problem of localization may be solved in a dynamical

manner [as illustrated by (2.8)].
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